C6-aldehyde formation by fatty acid hydroperoxide lyase in the brown alga Laminaria angustata.

نویسندگان

  • Kangsadan Boonprab
  • Kenji Matsui
  • Miyuki Yoshida
  • Yoshihiko Akakabe
  • Anong Chirapart
  • Tadahiko Kajiwara
چکیده

Some marine algae can form volatile aldehydes such as n-hexanal, hexenals, and nonenals. In higher plants it is well established that these short-chain aldehydes are formed from C18 fatty acids via actions of lipoxygenase and fatty acid hydroperoxide lyase, however, the biosynthetic pathway in marine algae has not been fully established yet. A brown alga, Laminaria angustata, forms relatively higher amounts of C6- and C9-aldehydes. When linoleic acid was added to a homogenate prepared from the fronds of this algae, formation of n-hexanal was observed. When glutathione peroxidase was added to the reaction mixture concomitant with glutathione, the formation of n-hexanal from linoleic acid was inhibited, and oxygenated fatty acids accumulated. By chemical analyses one of the major oxygenated fatty acids was shown to be (S)-13-hydroxy-(Z, E)-9, 11-octadecadienoic acid. Therefore, it is assumed that n-hexanal is formed from linoleic acid via a sequential action of lipoxygenase and fatty acid hydroperoxide lyase (HPL), by an almost similar pathway as the counterpart found in higher plants HPL partially purified from the fronds has a rather strict substrate specificity, and only 13-hydroperoxide of linoleic acid, and 15-hydroperoxide of arachidonic acid are the essentially suitable substrates for the enzyme. By surveying various species of marine algae including Phaeophyta, Rhodophyta and Chlorophyta it was shown that almost all the marine algae have HPL activity. Thus, a wide distribution of the enzyme is expected.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hydroperoxy-arachidonic acid mediated n-hexanal and (Z)-3- and (E)-2-nonenal formation in Laminaria angustata.

In higher plants, C6 and C9 aldehydes are formed from C18 fatty acids, such as linoleic or linolenic acid, through formation of 13- and 9-hydroperoxides, followed by their stereospecific cleavage by fatty acid hydroperoxide lyases (HPL). Some marine algae can also form C6 and C9 aldehydes, but their precise biosynthetic pathway has not been elucidated fully. In this study, we show that Laminari...

متن کامل

The impact of alteration of polyunsaturated fatty acid levels on C6-aldehyde formation of Arabidopsis thaliana leaves.

C6-aldehydes are synthesized via lipoxygenase/hydroperoxide lyase action on polyunsaturated fatty acid (PUFA) substrates in plant leaves. The source pools and subcellular location of the processes are unknown. A close relationship is found between the composition of PUFA and the composition of C6-aldehydes. In the current study, this relationship was tested using the Arabidopsis PUFA mutant lin...

متن کامل

Profiling of Volatile Compounds and Associated Gene Expression and Enzyme Activity during Fruit Development in Two Cucumber Cultivars

Changes in volatile content, as well as associated gene expression and enzyme activity in developing cucumber fruits were investigated in two Cucumis sativus L. lines (No. 26 and No. 14) that differ significantly in fruit flavor. Total volatile, six-carbon (C6) aldehyde, linolenic and linoleic acid content were higher during the early stages, whereas the nine-carbon (C9) aldehyde content was hi...

متن کامل

Cultivable Alginate Lyase-Excreting Bacteria Associated with the Arctic Brown Alga Laminaria

Although some alginate lyases have been isolated from marine bacteria, alginate lyases-excreting bacteria from the Arctic alga have not yet been investigated. Here, the diversity of the bacteria associated with the brown alga Laminaria from the Arctic Ocean was investigated for the first time. Sixty five strains belonging to nine genera were recovered from six Laminaria samples, in which Psychr...

متن کامل

Early events in the perception of lipopolysaccharides in the brown alga Laminaria digitata include an oxidative burst and activation of fatty acid oxidation cascades.

This study provides evidence that bacterial lipopolysaccharides can be strong triggers of early events of defence reactions in the brown algal kelp Laminaria digitata, constituting the first report of a biological activity of this class of macromolecules in a marine alga. The early events include an oxidative burst, release of free saturated and unsaturated fatty acids (FFAs) and accumulation o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Zeitschrift fur Naturforschung. C, Journal of biosciences

دوره 58 3-4  شماره 

صفحات  -

تاریخ انتشار 2003